Balance
0 ETH
👉Balance Chart
Token Balance
Transactions 123,674
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; import "../extensions/draft-IERC20Permit.sol"; import "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; function safeTransfer( IERC20 token, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom( IERC20 token, address from, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove( IERC20 token, address spender, uint256 value ) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance( IERC20 token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender) + value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance( IERC20 token, address spender, uint256 value ) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); uint256 newAllowance = oldAllowance - value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } } function safePermit( IERC20Permit token, address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { uint256 nonceBefore = token.nonces(owner); token.permit(owner, spender, value, deadline, v, r, s); uint256 nonceAfter = token.nonces(owner); require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); if (returndata.length > 0) { // Return data is optional require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.17; error TokenAddressIsZero(); error TokenNotSupported(); error CannotBridgeToSameNetwork(); error ZeroPostSwapBalance(); error NoSwapDataProvided(); error NativeValueWithERC(); error ContractCallNotAllowed(); error NullAddrIsNotAValidSpender(); error NullAddrIsNotAnERC20Token(); error NoTransferToNullAddress(); error NativeAssetTransferFailed(); error InvalidBridgeConfigLength(); error InvalidAmount(); error InvalidContract(); error InvalidConfig(); error UnsupportedChainId(uint256 chainId); error InvalidReceiver(); error InvalidDestinationChain(); error InvalidSendingToken(); error InvalidCaller(); error AlreadyInitialized(); error NotInitialized(); error OnlyContractOwner(); error CannotAuthoriseSelf(); error RecoveryAddressCannotBeZero(); error CannotDepositNativeToken(); error InvalidCallData(); error NativeAssetNotSupported(); error UnAuthorized(); error NoSwapFromZeroBalance(); error InvalidFallbackAddress(); error CumulativeSlippageTooHigh(uint256 minAmount, uint256 receivedAmount); error InsufficientBalance(uint256 required, uint256 balance); error ZeroAmount(); error ZeroAddress(); error InvalidFee(); error InformationMismatch(); error LengthMissmatch(); error NotAContract(); error NotEnoughBalance(uint256 requested, uint256 available); error InsufficientMessageValue(); error ExternalCallFailed(); error ReentrancyError();
// SPDX-License-Identifier: MIT pragma solidity 0.8.17; interface IFeesFacet { struct IntegratorFeeInfo { bool isIntegrator; // flag for setting 0 fees for integrator - 1 byte uint32 tokenFee; // total fee percent gathered from user - 4 bytes uint32 RubicTokenShare; // token share of platform commission - 4 bytes uint32 RubicFixedCryptoShare; // native share of fixed commission - 4 bytes uint128 fixedFeeAmount; // custom fixed fee amount - 16 bytes } /** * @dev Initializes the FeesFacet with treasury address and max fee amount * No need to check initialized status because if max fee is 0 than there is no token fees * @param _feeTreasure Address to send fees to * @param _maxRubicPlatformFee Max value of Tubic token fees */ function initialize( address _feeTreasure, uint256 _maxRubicPlatformFee, uint256 _maxFixedNativeFee ) external; /** * @dev Sets fee info associated with an integrator * @param _integrator Address of the integrator * @param _info Struct with fee info */ function setIntegratorInfo( address _integrator, IntegratorFeeInfo memory _info ) external; /** * @dev Sets address of the treasure * @param _feeTreasure Address of the treasure */ function setFeeTreasure(address _feeTreasure) external; /** * @dev Sets fixed crypto fee * @param _fixedNativeFee Fixed crypto fee */ function setFixedNativeFee(uint256 _fixedNativeFee) external; /** * @dev Sets Rubic token fee * @notice Cannot be higher than limit set only by an admin * @param _platformFee Fixed crypto fee */ function setRubicPlatformFee(uint256 _platformFee) external; /** * @dev Sets the limit of Rubic token fee * @param _maxFee The limit */ function setMaxRubicPlatformFee(uint256 _maxFee) external; /// VIEW FUNCTIONS /// function calcTokenFees( uint256 _amount, address _integrator ) external view returns (uint256 totalFee, uint256 RubicFee, uint256 integratorFee); function fixedNativeFee() external view returns (uint256 _fixedNativeFee); function RubicPlatformFee() external view returns (uint256 _RubicPlatformFee); function maxRubicPlatformFee() external view returns (uint256 _maxRubicPlatformFee); function maxFixedNativeFee() external view returns (uint256 _maxFixedNativeFee); function feeTreasure() external view returns (address feeTreasure); function integratorToFeeInfo( address _integrator ) external view returns (IFeesFacet.IntegratorFeeInfo memory _info); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.17; /// @title Contains 512-bit math functions /// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision /// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits library FullMath { /// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 /// @param a The multiplicand /// @param b The multiplier /// @param denominator The divisor /// @return result The 256-bit result /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv function mulDiv( uint256 a, uint256 b, uint256 denominator ) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = a * b // Compute the product mod 2**256 and mod 2**256 - 1 // then use the Chinese Remainder Theorem to reconstruct // the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2**256 + prod0 uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(a, b, not(0)) prod0 := mul(a, b) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division if (prod1 == 0) { require(denominator > 0); assembly { result := div(prod0, denominator) } return result; } // Make sure the result is less than 2**256. // Also prevents denominator == 0 require(denominator > prod1); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0] // Compute remainder using mulmod uint256 remainder; assembly { remainder := mulmod(a, b, denominator) } // Subtract 256 bit number from 512 bit number assembly { prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator // Compute largest power of two divisor of denominator. // Always >= 1. uint256 twos = (0 - denominator) & denominator; // Divide denominator by power of two assembly { denominator := div(denominator, twos) } // Divide [prod1 prod0] by the factors of two assembly { prod0 := div(prod0, twos) } // Shift in bits from prod1 into prod0. For this we need // to flip `twos` such that it is 2**256 / twos. // If twos is zero, then it becomes one assembly { twos := add(div(sub(0, twos), twos), 1) } prod0 |= prod1 * twos; // Invert denominator mod 2**256 // Now that denominator is an odd number, it has an inverse // modulo 2**256 such that denominator * inv = 1 mod 2**256. // Compute the inverse by starting with a seed that is correct // correct for four bits. That is, denominator * inv = 1 mod 2**4 uint256 inv = (3 * denominator) ^ 2; // Now use Newton-Raphson iteration to improve the precision. // Thanks to Hensel's lifting lemma, this also works in modular // arithmetic, doubling the correct bits in each step. inv *= 2 - denominator * inv; // inverse mod 2**8 inv *= 2 - denominator * inv; // inverse mod 2**16 inv *= 2 - denominator * inv; // inverse mod 2**32 inv *= 2 - denominator * inv; // inverse mod 2**64 inv *= 2 - denominator * inv; // inverse mod 2**128 inv *= 2 - denominator * inv; // inverse mod 2**256 // Because the division is now exact we can divide by multiplying // with the modular inverse of denominator. This will give us the // correct result modulo 2**256. Since the precoditions guarantee // that the outcome is less than 2**256, this is the final result. // We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inv; return result; } } }
// SPDX-License-Identifier: UNLICENSED pragma solidity 0.8.17; import { InsufficientBalance, NullAddrIsNotAnERC20Token, NullAddrIsNotAValidSpender, NoTransferToNullAddress, InvalidAmount, NativeValueWithERC, NativeAssetTransferFailed } from "../Errors/GenericErrors.sol"; import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import { ERC20Proxy } from "../Periphery/ERC20Proxy.sol"; import { LibSwap } from "./LibSwap.sol"; import { LibFees } from "./LibFees.sol"; /// @title LibAsset /// @notice This library contains helpers for dealing with onchain transfers /// of assets, including accounting for the native asset `assetId` /// conventions and any noncompliant ERC20 transfers library LibAsset { uint256 private constant MAX_UINT = type(uint256).max; address internal constant NULL_ADDRESS = address(0); /// @dev All native assets use the empty address for their asset id /// by convention address internal constant NATIVE_ASSETID = NULL_ADDRESS; //address(0) /// @notice Gets the balance of the inheriting contract for the given asset /// @param assetId The asset identifier to get the balance of /// @return Balance held by contracts using this library function getOwnBalance(address assetId) internal view returns (uint256) { return assetId == NATIVE_ASSETID ? address(this).balance : IERC20(assetId).balanceOf(address(this)); } /// @notice Transfers ether from the inheriting contract to a given /// recipient /// @param recipient Address to send ether to /// @param amount Amount to send to given recipient function transferNativeAsset( address payable recipient, uint256 amount ) internal { if (recipient == NULL_ADDRESS) revert NoTransferToNullAddress(); if (amount > address(this).balance) revert InsufficientBalance(amount, address(this).balance); // solhint-disable-next-line avoid-low-level-calls (bool success, ) = recipient.call{ value: amount }(""); if (!success) revert NativeAssetTransferFailed(); } /// @notice If the current allowance is insufficient, the allowance for a given spender /// is set to MAX_UINT. /// @param assetId Token address to transfer /// @param spender Address to give spend approval to /// @param amount Amount to approve for spending function maxApproveERC20( IERC20 assetId, address spender, uint256 amount ) internal { if (address(assetId) == NATIVE_ASSETID) return; if (spender == NULL_ADDRESS) revert NullAddrIsNotAValidSpender(); uint256 allowance = assetId.allowance(address(this), spender); if (allowance < amount) SafeERC20.safeIncreaseAllowance( IERC20(assetId), spender, MAX_UINT - allowance ); } /// @notice Transfers tokens from the inheriting contract to a given /// recipient /// @param assetId Token address to transfer /// @param recipient Address to send token to /// @param amount Amount to send to given recipient function transferERC20( address assetId, address recipient, uint256 amount ) internal { if (isNativeAsset(assetId)) revert NullAddrIsNotAnERC20Token(); uint256 assetBalance = IERC20(assetId).balanceOf(address(this)); if (amount > assetBalance) revert InsufficientBalance(amount, assetBalance); SafeERC20.safeTransfer(IERC20(assetId), recipient, amount); } /// @notice Transfers tokens from a sender to a given recipient /// @param assetId Token address to transfer /// @param from Address of sender/owner /// @param to Address of recipient/spender /// @param amount Amount to transfer from owner to spender function transferFromERC20( address assetId, address from, address to, uint256 amount ) internal { if (assetId == NATIVE_ASSETID) revert NullAddrIsNotAnERC20Token(); if (to == NULL_ADDRESS) revert NoTransferToNullAddress(); IERC20 asset = IERC20(assetId); uint256 prevBalance = asset.balanceOf(to); SafeERC20.safeTransferFrom(asset, from, to, amount); if (asset.balanceOf(to) - prevBalance != amount) revert InvalidAmount(); } /// @dev Deposits asset for bridging and accrues fixed and token fees /// @param assetId Address of asset to deposit /// @param amount Amount of asset to bridge /// @param extraNativeAmount Amount of native token to send to a bridge /// @param integrator Integrator for whom to count the fees /// @return amountWithoutFees Amount of tokens to bridge minus fees function depositAssetAndAccrueFees( address assetId, uint256 amount, uint256 extraNativeAmount, address integrator ) internal returns (uint256 amountWithoutFees) { uint256 accruedFixedNativeFee = LibFees.accrueFixedNativeFee( integrator ); // Check that msg value is at least greater than fixed native fee + extra fee sending to bridge if (msg.value < accruedFixedNativeFee + extraNativeAmount) revert InvalidAmount(); amountWithoutFees = _depositAndAccrueTokenFee( assetId, amount, accruedFixedNativeFee, extraNativeAmount, integrator ); } /// @dev Deposits assets for each swap that requires and accrues fixed and token fees /// @param swaps Array of swap datas /// @param integrator Integrator for whom to count the fees /// @return amountWithoutFees Array of swap datas with updated amounts function depositAssetsAndAccrueFees( LibSwap.SwapData[] memory swaps, address integrator ) internal returns (LibSwap.SwapData[] memory) { uint256 accruedFixedNativeFee = LibFees.accrueFixedNativeFee( integrator ); if (msg.value < accruedFixedNativeFee) revert InvalidAmount(); for (uint256 i = 0; i < swaps.length; ) { LibSwap.SwapData memory swap = swaps[i]; if (swap.requiresDeposit) { swap.fromAmount = _depositAndAccrueTokenFee( swap.sendingAssetId, swap.fromAmount, accruedFixedNativeFee, 0, integrator ); } swaps[i] = swap; unchecked { i++; } } return swaps; } function _depositAndAccrueTokenFee( address assetId, uint256 amount, uint256 accruedFixedNativeFee, uint256 extraNativeAmount, address integrator ) private returns (uint256 amountWithoutFees) { if (isNativeAsset(assetId)) { // Check that msg value greater than sending amount + fixed native fees + extra fees sending to bridge if (msg.value < amount + accruedFixedNativeFee + extraNativeAmount) revert InvalidAmount(); } else { if (amount == 0) revert InvalidAmount(); uint256 balance = IERC20(assetId).balanceOf(address(this)); if (balance < amount) revert InsufficientBalance(amount, balance); // getERC20proxy().transferFrom( // assetId, // msg.sender, // address(this), // amount // ); } amountWithoutFees = LibFees.accrueTokenFees( integrator, amount, assetId ); } /// @notice Determines whether the given assetId is the native asset /// @param assetId The asset identifier to evaluate /// @return Boolean indicating if the asset is the native asset function isNativeAsset(address assetId) internal pure returns (bool) { return assetId == NATIVE_ASSETID; } /// @notice Wrapper function to transfer a given asset (native or erc20) to /// some recipient. Should handle all non-compliant return value /// tokens as well by using the SafeERC20 contract by open zeppelin. /// @param assetId Asset id for transfer (address(0) for native asset, /// token address for erc20s) /// @param recipient Address to send asset to /// @param amount Amount to send to given recipient function transferAsset( address assetId, address payable recipient, uint256 amount ) internal { (assetId == NATIVE_ASSETID) ? transferNativeAsset(recipient, amount) : transferERC20(assetId, recipient, amount); } /// @dev Checks whether the given address is a contract and contains code function isContract(address _contractAddr) internal view returns (bool) { uint256 size; // solhint-disable-next-line no-inline-assembly assembly { size := extcodesize(_contractAddr) } return size > 0; } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.17; library LibBytes { // solhint-disable no-inline-assembly // LibBytes specific errors error SliceOverflow(); error SliceOutOfBounds(); error AddressOutOfBounds(); error UintOutOfBounds(); // ------------------------- function concat( bytes memory _preBytes, bytes memory _postBytes ) internal pure returns (bytes memory) { bytes memory tempBytes; assembly { // Get a location of some free memory and store it in tempBytes as // Solidity does for memory variables. tempBytes := mload(0x40) // Store the length of the first bytes array at the beginning of // the memory for tempBytes. let length := mload(_preBytes) mstore(tempBytes, length) // Maintain a memory counter for the current write location in the // temp bytes array by adding the 32 bytes for the array length to // the starting location. let mc := add(tempBytes, 0x20) // Stop copying when the memory counter reaches the length of the // first bytes array. let end := add(mc, length) for { // Initialize a copy counter to the start of the _preBytes data, // 32 bytes into its memory. let cc := add(_preBytes, 0x20) } lt(mc, end) { // Increase both counters by 32 bytes each iteration. mc := add(mc, 0x20) cc := add(cc, 0x20) } { // Write the _preBytes data into the tempBytes memory 32 bytes // at a time. mstore(mc, mload(cc)) } // Add the length of _postBytes to the current length of tempBytes // and store it as the new length in the first 32 bytes of the // tempBytes memory. length := mload(_postBytes) mstore(tempBytes, add(length, mload(tempBytes))) // Move the memory counter back from a multiple of 0x20 to the // actual end of the _preBytes data. mc := end // Stop copying when the memory counter reaches the new combined // length of the arrays. end := add(mc, length) for { let cc := add(_postBytes, 0x20) } lt(mc, end) { mc := add(mc, 0x20) cc := add(cc, 0x20) } { mstore(mc, mload(cc)) } // Update the free-memory pointer by padding our last write location // to 32 bytes: add 31 bytes to the end of tempBytes to move to the // next 32 byte block, then round down to the nearest multiple of // 32. If the sum of the length of the two arrays is zero then add // one before rounding down to leave a blank 32 bytes (the length block with 0). mstore( 0x40, and( add(add(end, iszero(add(length, mload(_preBytes)))), 31), not(31) // Round down to the nearest 32 bytes. ) ) } return tempBytes; } function concatStorage( bytes storage _preBytes, bytes memory _postBytes ) internal { assembly { // Read the first 32 bytes of _preBytes storage, which is the length // of the array. (We don't need to use the offset into the slot // because arrays use the entire slot.) let fslot := sload(_preBytes.slot) // Arrays of 31 bytes or less have an even value in their slot, // while longer arrays have an odd value. The actual length is // the slot divided by two for odd values, and the lowest order // byte divided by two for even values. // If the slot is even, bitwise and the slot with 255 and divide by // two to get the length. If the slot is odd, bitwise and the slot // with -1 and divide by two. let slength := div( and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2 ) let mlength := mload(_postBytes) let newlength := add(slength, mlength) // slength can contain both the length and contents of the array // if length < 32 bytes so let's prepare for that // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage switch add(lt(slength, 32), lt(newlength, 32)) case 2 { // Since the new array still fits in the slot, we just need to // update the contents of the slot. // uint256(bytes_storage) = uint256(bytes_storage) + uint256(bytes_memory) + new_length sstore( _preBytes.slot, // all the modifications to the slot are inside this // next block add( // we can just add to the slot contents because the // bytes we want to change are the LSBs fslot, add( mul( div( // load the bytes from memory mload(add(_postBytes, 0x20)), // zero all bytes to the right exp(0x100, sub(32, mlength)) ), // and now shift left the number of bytes to // leave space for the length in the slot exp(0x100, sub(32, newlength)) ), // increase length by the double of the memory // bytes length mul(mlength, 2) ) ) ) } case 1 { // The stored value fits in the slot, but the combined value // will exceed it. // get the keccak hash to get the contents of the array mstore(0x0, _preBytes.slot) let sc := add(keccak256(0x0, 0x20), div(slength, 32)) // save new length sstore(_preBytes.slot, add(mul(newlength, 2), 1)) // The contents of the _postBytes array start 32 bytes into // the structure. Our first read should obtain the `submod` // bytes that can fit into the unused space in the last word // of the stored array. To get this, we read 32 bytes starting // from `submod`, so the data we read overlaps with the array // contents by `submod` bytes. Masking the lowest-order // `submod` bytes allows us to add that value directly to the // stored value. let submod := sub(32, slength) let mc := add(_postBytes, submod) let end := add(_postBytes, mlength) let mask := sub(exp(0x100, submod), 1) sstore( sc, add( and( fslot, 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00 ), and(mload(mc), mask) ) ) for { mc := add(mc, 0x20) sc := add(sc, 1) } lt(mc, end) { sc := add(sc, 1) mc := add(mc, 0x20) } { sstore(sc, mload(mc)) } mask := exp(0x100, sub(mc, end)) sstore(sc, mul(div(mload(mc), mask), mask)) } default { // get the keccak hash to get the contents of the array mstore(0x0, _preBytes.slot) // Start copying to the last used word of the stored array. let sc := add(keccak256(0x0, 0x20), div(slength, 32)) // save new length sstore(_preBytes.slot, add(mul(newlength, 2), 1)) // Copy over the first `submod` bytes of the new data as in // case 1 above. let slengthmod := mod(slength, 32) let submod := sub(32, slengthmod) let mc := add(_postBytes, submod) let end := add(_postBytes, mlength) let mask := sub(exp(0x100, submod), 1) sstore(sc, add(sload(sc), and(mload(mc), mask))) for { sc := add(sc, 1) mc := add(mc, 0x20) } lt(mc, end) { sc := add(sc, 1) mc := add(mc, 0x20) } { sstore(sc, mload(mc)) } mask := exp(0x100, sub(mc, end)) sstore(sc, mul(div(mload(mc), mask), mask)) } } } function slice( bytes memory _bytes, uint256 _start, uint256 _length ) internal pure returns (bytes memory) { if (_length + 31 < _length) revert SliceOverflow(); if (_bytes.length < _start + _length) revert SliceOutOfBounds(); bytes memory tempBytes; assembly { switch iszero(_length) case 0 { // Get a location of some free memory and store it in tempBytes as // Solidity does for memory variables. tempBytes := mload(0x40) // The first word of the slice result is potentially a partial // word read from the original array. To read it, we calculate // the length of that partial word and start copying that many // bytes into the array. The first word we copy will start with // data we don't care about, but the last `lengthmod` bytes will // land at the beginning of the contents of the new array. When // we're done copying, we overwrite the full first word with // the actual length of the slice. let lengthmod := and(_length, 31) // The multiplication in the next line is necessary // because when slicing multiples of 32 bytes (lengthmod == 0) // the following copy loop was copying the origin's length // and then ending prematurely not copying everything it should. let mc := add( add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)) ) let end := add(mc, _length) for { // The multiplication in the next line has the same exact purpose // as the one above. let cc := add( add( add(_bytes, lengthmod), mul(0x20, iszero(lengthmod)) ), _start ) } lt(mc, end) { mc := add(mc, 0x20) cc := add(cc, 0x20) } { mstore(mc, mload(cc)) } mstore(tempBytes, _length) //update free-memory pointer //allocating the array padded to 32 bytes like the compiler does now mstore(0x40, and(add(mc, 31), not(31))) } //if we want a zero-length slice let's just return a zero-length array default { tempBytes := mload(0x40) //zero out the 32 bytes slice we are about to return //we need to do it because Solidity does not garbage collect mstore(tempBytes, 0) mstore(0x40, add(tempBytes, 0x20)) } } return tempBytes; } function toAddress( bytes memory _bytes, uint256 _start ) internal pure returns (address) { if (_bytes.length < _start + 20) { revert AddressOutOfBounds(); } address tempAddress; assembly { tempAddress := div( mload(add(add(_bytes, 0x20), _start)), 0x1000000000000000000000000 ) } return tempAddress; } function toUint8( bytes memory _bytes, uint256 _start ) internal pure returns (uint8) { if (_bytes.length < _start + 1) { revert UintOutOfBounds(); } uint8 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x1), _start)) } return tempUint; } function toUint16( bytes memory _bytes, uint256 _start ) internal pure returns (uint16) { if (_bytes.length < _start + 2) { revert UintOutOfBounds(); } uint16 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x2), _start)) } return tempUint; } function toUint32( bytes memory _bytes, uint256 _start ) internal pure returns (uint32) { if (_bytes.length < _start + 4) { revert UintOutOfBounds(); } uint32 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x4), _start)) } return tempUint; } function toUint64( bytes memory _bytes, uint256 _start ) internal pure returns (uint64) { if (_bytes.length < _start + 8) { revert UintOutOfBounds(); } uint64 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x8), _start)) } return tempUint; } function toUint96( bytes memory _bytes, uint256 _start ) internal pure returns (uint96) { if (_bytes.length < _start + 12) { revert UintOutOfBounds(); } uint96 tempUint; assembly { tempUint := mload(add(add(_bytes, 0xc), _start)) } return tempUint; } function toUint128( bytes memory _bytes, uint256 _start ) internal pure returns (uint128) { if (_bytes.length < _start + 16) { revert UintOutOfBounds(); } uint128 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x10), _start)) } return tempUint; } function toUint256( bytes memory _bytes, uint256 _start ) internal pure returns (uint256) { if (_bytes.length < _start + 32) { revert UintOutOfBounds(); } uint256 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x20), _start)) } return tempUint; } function toBytes32( bytes memory _bytes, uint256 _start ) internal pure returns (bytes32) { if (_bytes.length < _start + 32) { revert UintOutOfBounds(); } bytes32 tempBytes32; assembly { tempBytes32 := mload(add(add(_bytes, 0x20), _start)) } return tempBytes32; } function equal( bytes memory _preBytes, bytes memory _postBytes ) internal pure returns (bool) { bool success = true; assembly { let length := mload(_preBytes) // if lengths don't match the arrays are not equal switch eq(length, mload(_postBytes)) case 1 { // cb is a circuit breaker in the for loop since there's // no said feature for inline assembly loops // cb = 1 - don't breaker // cb = 0 - break let cb := 1 let mc := add(_preBytes, 0x20) let end := add(mc, length) for { let cc := add(_postBytes, 0x20) // the next line is the loop condition: // while(uint256(mc < end) + cb == 2) } eq(add(lt(mc, end), cb), 2) { mc := add(mc, 0x20) cc := add(cc, 0x20) } { // if any of these checks fails then arrays are not equal if iszero(eq(mload(mc), mload(cc))) { // unsuccess: success := 0 cb := 0 } } } default { // unsuccess: success := 0 } } return success; } function equalStorage( bytes storage _preBytes, bytes memory _postBytes ) internal view returns (bool) { bool success = true; assembly { // we know _preBytes_offset is 0 let fslot := sload(_preBytes.slot) // Decode the length of the stored array like in concatStorage(). let slength := div( and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2 ) let mlength := mload(_postBytes) // if lengths don't match the arrays are not equal switch eq(slength, mlength) case 1 { // slength can contain both the length and contents of the array // if length < 32 bytes so let's prepare for that // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage if iszero(iszero(slength)) { switch lt(slength, 32) case 1 { // blank the last byte which is the length fslot := mul(div(fslot, 0x100), 0x100) if iszero(eq(fslot, mload(add(_postBytes, 0x20)))) { // unsuccess: success := 0 } } default { // cb is a circuit breaker in the for loop since there's // no said feature for inline assembly loops // cb = 1 - don't breaker // cb = 0 - break let cb := 1 // get the keccak hash to get the contents of the array mstore(0x0, _preBytes.slot) let sc := keccak256(0x0, 0x20) let mc := add(_postBytes, 0x20) let end := add(mc, mlength) // the next line is the loop condition: // while(uint256(mc < end) + cb == 2) // solhint-disable-next-line no-empty-blocks for { } eq(add(lt(mc, end), cb), 2) { sc := add(sc, 1) mc := add(mc, 0x20) } { if iszero(eq(sload(sc), mload(mc))) { // unsuccess: success := 0 cb := 0 } } } } } default { // unsuccess: success := 0 } } return success; } function getFirst4Bytes( bytes memory data ) internal pure returns (bytes4 outBytes4) { if (data.length == 0) { return 0x0; } assembly { outBytes4 := mload(add(data, 32)) } } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.17; import { IFeesFacet } from "../Interfaces/IFeesFacet.sol"; import { LibUtil } from "../Libraries/LibUtil.sol"; import { FullMath } from "../Libraries/FullMath.sol"; import { LibAsset } from "../Libraries/LibAsset.sol"; /// Implementation of EIP-2535 Diamond Standard /// https://eips.ethereum.org/EIPS/eip-2535 library LibFees { bytes32 internal constant FFES_STORAGE_POSITION = keccak256("rubic.library.fees.v2"); // Denominator for setting fees uint256 internal constant DENOMINATOR = 1e6; // ---------------- event FixedNativeFee( uint256 RubicPart, uint256 integratorPart, address indexed integrator ); event FixedNativeFeeCollected(uint256 amount, address collector); event TokenFee( uint256 RubicPart, uint256 integratorPart, address indexed integrator, address token ); event IntegratorTokenFeeCollected( uint256 amount, address indexed integrator, address token ); struct FeesStorage { mapping(address => IFeesFacet.IntegratorFeeInfo) integratorToFeeInfo; uint256 maxRubicPlatformFee; // sets while initialize uint256 maxFixedNativeFee; // sets while initialize & cannot be changed uint256 RubicPlatformFee; // Rubic fixed fee for swap uint256 fixedNativeFee; address feeTreasure; bool initialized; } function feesStorage() internal pure returns (FeesStorage storage fs) { bytes32 position = FFES_STORAGE_POSITION; // solhint-disable-next-line no-inline-assembly assembly { fs.slot := position } } /** * @dev Calculates and accrues fixed crypto fee * @param _integrator Integrator's address if there is one * @return The amount of fixedNativeFee */ function accrueFixedNativeFee( address _integrator ) internal returns (uint256) { uint256 _fixedNativeFee; uint256 _RubicPart; FeesStorage storage fs = feesStorage(); IFeesFacet.IntegratorFeeInfo memory _info = fs.integratorToFeeInfo[ _integrator ]; if (_info.isIntegrator) { _fixedNativeFee = uint256(_info.fixedFeeAmount); if (_fixedNativeFee > 0) { _RubicPart = (_fixedNativeFee * _info.RubicFixedCryptoShare) / DENOMINATOR; if (_fixedNativeFee - _RubicPart > 0) LibAsset.transferNativeAsset( payable(_integrator), _fixedNativeFee - _RubicPart ); } } else { _fixedNativeFee = fs.fixedNativeFee; _RubicPart = _fixedNativeFee; } if (_RubicPart > 0) LibAsset.transferNativeAsset(payable(fs.feeTreasure), _RubicPart); emit FixedNativeFee( _RubicPart, _fixedNativeFee - _RubicPart, _integrator ); return _fixedNativeFee; } /** * @dev Calculates token fees and accrues them * @param _integrator Integrator's address if there is one * @param _amountWithFee Total amount passed by the user * @param _token The token in which the fees are collected * @return Amount of tokens without fee */ function accrueTokenFees( address _integrator, uint256 _amountWithFee, address _token ) internal returns (uint256) { FeesStorage storage fs = feesStorage(); IFeesFacet.IntegratorFeeInfo memory _info = fs.integratorToFeeInfo[ _integrator ]; (uint256 _totalFees, uint256 _RubicFee) = _calculateFee( fs, _amountWithFee, _info ); if (_integrator != address(0)) { if (_totalFees - _RubicFee > 0) LibAsset.transferAsset( _token, payable(_integrator), _totalFees - _RubicFee ); } if (_RubicFee > 0) LibAsset.transferAsset(_token, payable(fs.feeTreasure), _RubicFee); emit TokenFee(_RubicFee, _totalFees - _RubicFee, _integrator, _token); return _amountWithFee - _totalFees; } /// PRIVATE /// /** * @dev Calculates fee amount for integrator and rubic, used in architecture * @param _amountWithFee the users initial amount * @param _info the struct with data about integrator * @return _totalFee the amount of Rubic + integrator fee * @return _RubicFee the amount of Rubic fee only */ function _calculateFeeWithIntegrator( uint256 _amountWithFee, IFeesFacet.IntegratorFeeInfo memory _info ) private pure returns (uint256 _totalFee, uint256 _RubicFee) { if (_info.tokenFee > 0) { _totalFee = FullMath.mulDiv( _amountWithFee, _info.tokenFee, DENOMINATOR ); _RubicFee = FullMath.mulDiv( _totalFee, _info.RubicTokenShare, DENOMINATOR ); } } function _calculateFee( FeesStorage storage _fs, uint256 _amountWithFee, IFeesFacet.IntegratorFeeInfo memory _info ) internal view returns (uint256 _totalFee, uint256 _RubicFee) { if (_info.isIntegrator) { (_totalFee, _RubicFee) = _calculateFeeWithIntegrator( _amountWithFee, _info ); } else { _totalFee = FullMath.mulDiv( _amountWithFee, _fs.RubicPlatformFee, DENOMINATOR ); _RubicFee = _totalFee; } } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.17; import { LibAsset } from "./LibAsset.sol"; import { LibUtil } from "./LibUtil.sol"; import { InvalidContract, NoSwapFromZeroBalance, InsufficientBalance, UnAuthorized } from "../Errors/GenericErrors.sol"; import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; library LibSwap { struct SwapData { address callTo; address approveTo; address sendingAssetId; address receivingAssetId; uint256 fromAmount; bytes callData; bool requiresDeposit; } event AssetSwapped( bytes32 transactionId, address dex, address fromAssetId, address toAssetId, uint256 fromAmount, uint256 toAmount, uint256 timestamp ); function swap(bytes32 transactionId, SwapData memory _swap) internal { if (!LibAsset.isContract(_swap.callTo)) revert InvalidContract(); uint256 fromAmount = _swap.fromAmount; if (fromAmount == 0) revert NoSwapFromZeroBalance(); uint256 nativeValue = LibAsset.isNativeAsset(_swap.sendingAssetId) ? _swap.fromAmount : 0; uint256 initialSendingAssetBalance = LibAsset.getOwnBalance( _swap.sendingAssetId ); uint256 initialReceivingAssetBalance = LibAsset.getOwnBalance( _swap.receivingAssetId ); if (nativeValue == 0) { LibAsset.maxApproveERC20( IERC20(_swap.sendingAssetId), _swap.approveTo, _swap.fromAmount ); } if (initialSendingAssetBalance < _swap.fromAmount) { revert InsufficientBalance( _swap.fromAmount, initialSendingAssetBalance ); } // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory res) = _swap.callTo.call{ value: nativeValue }(_swap.callData); if (!success) { string memory reason = LibUtil.getRevertMsg(res); revert(reason); } uint256 newBalance = LibAsset.getOwnBalance(_swap.receivingAssetId); emit AssetSwapped( transactionId, _swap.callTo, _swap.sendingAssetId, _swap.receivingAssetId, _swap.fromAmount, newBalance > initialReceivingAssetBalance ? newBalance - initialReceivingAssetBalance : newBalance, block.timestamp ); } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.17; import "./LibBytes.sol"; library LibUtil { using LibBytes for bytes; function getRevertMsg( bytes memory _res ) internal pure returns (string memory) { if (_res.length < 68) return string(_res); bytes memory revertData = _res.slice(4, _res.length - 4); // Remove the selector which is the first 4 bytes return abi.decode(revertData, (string)); // All that remains is the revert string } /// @notice Determines whether the given address is the zero address /// @param addr The address to verify /// @return Boolean indicating if the address is the zero address function isZeroAddress(address addr) internal pure returns (bool) { return addr == address(0); } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.17; import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol"; import { LibAsset } from "../Libraries/LibAsset.sol"; import { LibUtil } from "../Libraries/LibUtil.sol"; import { ZeroAddress, LengthMissmatch, NotInitialized } from "../Errors/GenericErrors.sol"; /// @title ERC20 Proxy /// @notice Proxy contract for safely transferring ERC20 tokens for swaps/executions contract ERC20Proxy is Ownable { /// Storage /// address public diamond; /// Events /// event DiamondSet(address diamond); /// Constructor constructor(address _owner, address _diamond) { transferOwnership(_owner); diamond = _diamond; } function setDiamond(address _diamond) external onlyOwner { if (_diamond == address(0)) revert ZeroAddress(); diamond = _diamond; emit DiamondSet(_diamond); } /// @dev Transfers tokens from user to the diamond and calls it /// @param tokens Addresses of tokens that should be sent to the diamond /// @param amounts Corresponding amounts of tokens /// @param facetCallData Calldata that should be passed to the diamond /// Should contain any cross-chain related function function startViaRubic( address[] memory tokens, uint256[] memory amounts, bytes memory facetCallData ) external payable { if (diamond == address(0)) revert NotInitialized(); uint256 tokensLength = tokens.length; if (tokensLength != amounts.length) revert LengthMissmatch(); for (uint256 i = 0; i < tokensLength; ) { LibAsset.transferFromERC20( tokens[i], msg.sender, diamond, amounts[i] ); unchecked { ++i; } } // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory res) = diamond.call{ value: msg.value }( facetCallData ); if (!success) { string memory reason = LibUtil.getRevertMsg(res); revert(reason); } } }
[{"inputs":[{"internalType":"address","name":"_owner","type":"address"},{"internalType":"address","name":"_diamond","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"InvalidAmount","type":"error"},{"inputs":[],"name":"LengthMissmatch","type":"error"},{"inputs":[],"name":"NoTransferToNullAddress","type":"error"},{"inputs":[],"name":"NotInitialized","type":"error"},{"inputs":[],"name":"NullAddrIsNotAnERC20Token","type":"error"},{"inputs":[],"name":"SliceOutOfBounds","type":"error"},{"inputs":[],"name":"SliceOverflow","type":"error"},{"inputs":[],"name":"ZeroAddress","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"diamond","type":"address"}],"name":"DiamondSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"inputs":[],"name":"diamond","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_diamond","type":"address"}],"name":"setDiamond","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[]","name":"tokens","type":"address[]"},{"internalType":"uint256[]","name":"amounts","type":"uint256[]"},{"internalType":"bytes","name":"facetCallData","type":"bytes"}],"name":"startViaRubic","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"}]
00000000000000000000000000009cc27c811a3e0fdd2fd737afcc721b67ee8e0000000000000000000000006aa981bff95edfea36bdae98c26b274ffcafe8d3 ----Decode View------------Arg [0] : _owner (address): 0x00009cc27c811a3e0FdD2Fd737afCc721B67eE8eArg [1] : _diamond (address): 0x6AA981bFF95eDfea36Bdae98C26B274FfcafE8d3-----Encoded View--------------- 2 Constructor Arguments found :Arg [0] : 00000000000000000000000000009cc27c811a3e0fdd2fd737afcc721b67ee8eArg [1] : 0000000000000000000000006aa981bff95edfea36bdae98c26b274ffcafe8d3